Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243146

ABSTRACT

Case history: We present the case of a 31-year-old Hispanic male with history of recurrent bronchiectasis, invasive aspergillosis, and severe persistent asthma, who is now status post lung transplant for end-stage lung disease. He initially presented at 7 years of age with diarrhea, failure to thrive, and nearly absent immunoglobulin levels (IgG < 33 mg/dL, IgA < 7 mg/dL, IgM = 11 mg/dL, IgE = 4 IU/dL) necessitating IVIG treatment. Small intestinal biopsy showed villous atrophy consistent with autoimmune enteropathy. Sweat chloride was reported as indeterminate (44 me/dL). Initial WBC, platelet, and T- and NK-cell counts were within normal range, and B-cell count and percentage were borderline low. Most recently, he was found to have increased immature B-cell count (CD21low), decreased memory B-cells, and poor pneumococcal vaccine antibody response. Patient has been hospitalized numerous times with increasingly severe bronchiectasis, pneumonitis, and COVID-19 infections twice despite vaccination, leading to respiratory failure and lung transplantation. Family history is negative for immune deficiency and lung diseases. Discussion(s): Of these 3 VUSs (see the table), the one in IRF2BP2 has the most pathogenic potential due to its autosomal dominant inheritance, its location in a conserved domain (Ring), and previous case reports of pathogenic variants at the same or adjacent alleles 1-3. Baxter et al reported a de novo truncating mutation in IRF2BP2 at codon 536 (c.1606CinsTTT), which is similar to our patient's mutation. This patient was noted to have an IPEX-like presentation, with chronic diarrhea, hypogammaglobulinemia, and recurrent infections. Variant Functional Prediction Score for our variant predicts a potentially high damage effect. There are 2 other case reports of heterozygous mutations in loci adjacent to this allele;one (c.1652G>A)2 with a similar clinical phenotype to our patient and the other (C.625-665 del)3 with primarily inflammatory features and few infections. Impact: This case highlights a variant in IRF2BP2 associated with severe hypogammaglobulinemia, recurrent pulmonary infections, and autoimmune enteropathy. [Table presented]Copyright © 2023 Elsevier Inc.

2.
Elife ; 112022 10 27.
Article in English | MEDLINE | ID: covidwho-2155745

ABSTRACT

Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.


Subject(s)
Autoimmune Diseases , Bacteriophages , COVID-19 , Humans , Autoantibodies , Autoantigens/metabolism , Autoimmunity , Bacteriophages/metabolism , Homeodomain Proteins , Immunoprecipitation , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL